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1 Introduction

The study of the quasi-normal modes has been a classical subject in black hole physics [1]. They

are called the “sound” of the black hole, characterizing the response of the black hole to various

perturbations. As usual, the perturbations of the black holes obey linearized equations of motion.

And the quasi-normal modes are defined as the perturbations subject to the physical boundary

condition which states that near the horizon of the black hole the local solution is purely ingoing and

at spatial infinity the solution is purely outgoing. As a result, the frequencies of the perturbations

are complex, indicating that the perturbations undergo damped oscillations, just as the ring of a bell.

In fact, the frequencies of the quasi-normal modes usually take only a discrete set of complex

values. The imaginary parts of the frequencies characterize the decay time of the perturbations.

Or in other words, their inverses characterize the relaxation time of the system back to thermal

equilibrium, with the black hole being taken as a thermal dynamic system. Especially for the black

holes in Anti-de-Sitter(AdS) spacetime, the above picture has a nice realization in its dual field

theory. From AdS/CFT correspondence [2], the black hole in the bulk corresponds to the quantum

field theory on the boundary at a finite temperature. In recent years, the correspondence at finite

temperature has been widely applied to the physical systems ranging from quark-gluon-plasma,

superconductor, superfluid to cold atom physics [7]. The quasi-normal modes of the black holes

correspond to the operators perturbing the thermal equilibrium in dual field theory [3]. In finite

temperature field theory, the return to equilibrium under the small perturbations is described by

linear response theory. The poles in the retarded green function of the perturbations in momentum

space encode the information of relaxation process. From AdS/CFT correspondence, these poles

are closely related to the quasi-normal frequencies of the black holes, as first suggested in [4]. The
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qualitative agreements via numerical analysis have been found for the black holes in AdS space-

time [4, 5]. Moreover in a remarkable paper [6], the quantitative agreement has been confirmed for

the perturbations with various spins of the BTZ black hole.

Actually, the Banados-Teitelboim-Zanelli(BTZ) black hole sets up the first example of

AdS/CFT correspondence. It is a solution of the vacuum Einstein equations in three-dimensional

anti-de Sitter spacetime [8]. Its dual is a two-dimensional conformal field theory with independent

left and right sectors. At thermal equilibrium, these two sectors may have different temperatures

(TL, TR). For a small perturbation by the operator O with conformal weights (hL, hR), its retarded

Green’s function has two sets of poles:

ωL = k − 4πiTL(n + hL),

ωR = −k − 4πiTR(n + hR), (1.1)

with n being non-negative integer. In [6], it has been shown that these poles are in exact agreement

with the quasi-normal frequencies of corresponding pertubations of the BTZ black hole.

Recently, inspired by the study of AdS 3/CFT2 correspondence in the BTZ black hole, a new

kind of warped AdS 3/CFT2 correspondence has been proposed in [9]. It was pointed out that

for the spacelike stretched and the null warped AdS 3 black holes, there exist dual two-dimensional

conformal field theory descriptions. The proposal was supported by the study of thermodynamic on

both sides. It was further conjectured that v > 1 quantum topological massive gravity is holograph-

ically dual to a two-dimensional conformal field theory with central charges (cL, cR). However, this

correspondence is intriguing in the sense that the warped AdS 3 spacetime has very different confor-

mal boundary from the one of AdS 3. The naive expectation that the holographic CFT resides on the

asymptotic boundary seems not true any more. The dictionary in warped AdS/CFT correspondence

is not clear yet. As a step to understand the correspondence, we calculated the scalar quasi-normal

modes of the spacelike stretched AdS 3 black holes in [10]. At the first looking, the quasi-normal

modes we obtained are quite different from the prediction of the usual AdS/CFT correspondence.

In this paper, we resolve this puzzle. The key point in our analysis is to notice that the asymptotic

metric of the warped black holes is actually not the same as the one of the warped AdS 3 spacetime.

One needs to make local coordinates transformations to identify two geometries. Such transforma-

tions induce the identifications of two sets of quantum numbers in two different backgrounds. After

using the right quantum numbers, we find that the relations on the quasi-normal modes indeed are

in good match with the prediction of (warped) AdS/CFT correspondence.

Moreover in this paper, we calculate other kinds of the quasi-normal modes of the warped

black holes. Our calculation includes the vector and spinor quasi-normal modes of the spacelike

stretched warped AdS 3 black holes, and also the scalar, vector and spinor quasi-normal modes of

the null warped AdS 3 black holes. In all these cases, the quasi-normal modes could be obtained

analytically. And after taking into account of the subtlety on the quantum numbers, all the quasi-

normal modes are in good agreement with the prediction.

One subtle point in our study is on the boundary condition at the asymptotical infinity. In the

usual AdS black hole case, the effective potential is infinitely high and one may impose vanishing

Dirichlet condition at infinity on the eigenfunction. In the warped AdS black hole case, this is

not obvious. The asymptotic boundary condition on the gravitational perturbation has been un-

der intense study [19–21] to define the dual CFT. For other kinds of perturbations, one may just
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require the flux at asymptotic boundary to be finite. This turns out to be equivalent to the van-

ishing Dirichlet condition in some cases. But generically the finite flux condition leads to more

quasi-normal modes.

To set up the correspondence, it is essential to have the conformal dimensions of corresponding

operators. One way to obtain the conformal dimensions could be from the equations of motion of

various perturbations and studying the asymptotic behavior of the solutions. In our case, there

is another way to compute the conformal dimension. This way stems from the existence of the

isometry algebra SL(2,R) × U(1) in the backgrounds, which allows us to identify the conformal

dimensions of primary operators in the dual CFT.

The remaining part of the paper is organized as following: in the next section, we focus on

the spacelike stretched warped black hole and analyze its quasi-normal modes. And in section 3,

we turn to the study of the quasi-normal modes of the null warped black hole. In section 4, we

compute the conformal dimensions of the operators dual to the perturbations from SL(2,R) ×U(1)
algebra. In section 5, we end with the conclusions and the discussions.

2 Quasi-normal modes of the spacelike stretched warped AdS3 black hole

The spacelike stretched AdS 3 spacetime is the vacuum solution of three-dimensional topological

massive gravity [11, 12]. This spacetime has an isometry group SL(2)R × U(1)L. It could be a

stable vacuum with appropriate boundary behavior, if the parameter v > 1 [19]. Just as the BTZ

black hole could be constructed as the orbifold of the AdS 3 spacetime, the black hole asymptotic

to spacelike warped AdS 3 could be constructed from discrete identification as well. We would not

like to review the construction here. The interested reader can find the details in [9].

The metric of the spacelike stretched warped AdS 3 black hole takes the following form in

terms of Schwarzschild coordinates:

ds2 = l2(dt2 + 2M(r)dtdθ + N(r)dθ2 + D(r)dr2), (2.1)

where

M(r) = vr − 1

2

√

r+r−(v2 + 3), (2.2)

N(r) =
r

4

(

3(v2 − 1)r + (v2 + 3)(r+ + r−) − 4v
√

r+r−(v2 + 3)
)

, (2.3)

D(r) =
1

(v2 + 3)(r − r+)(r − r−)
, (2.4)

and −l−2 is a negative cosmological constant and the parameter v = µl/3 with µ being the mass of

the graviton. Just like the BTZ black hole, there are two horizons located at r = r+ and r = r−.

We will focus on the physical black holes without pathology, in which case we need to require

v > 1. When v = 1, there is no stretching and the above black hole becomes the usual BTZ black

hole. This kind of warped black hole was discussed in [14, 15], and its properties were studied

in [16, 17]. The other recent studies could be found in [22].

In [9], the temperatures of the warped black holes were identified to be

1

TH

=
4πvl

v2 + 3

TL + TR

TR

, (2.5)
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where

TL =
(v2 + 3)

8πl















r+ + r− −
√

(v2 + 3)r+r−
v















, (2.6)

TR =
(v2 + 3)(r+ − r−)

8πl
, (2.7)

are the temperature of the dual CFT. The dual two-dimensional CFT is supposed to have the cen-

tral charges

cL =
l

G

4v

v2 + 3
, cR =

l

G

5v2 + 3

v(v2 + 3)
. (2.8)

It has been shown in [13, 20] that the above central charges could be obtained from central extended

Virasoro algebra, based on the fact that the asymptotic symmetries of the geometries form a semi-

product of a Virasoro algebra and a current algebra.

The scalar perturbation about this background obeys the equation of motion:

(∇µ∇µ − m2)Φ = 0. (2.9)

Since the background has the translational isometry along t and θ, we may make the follow-

ing ansatz

Φ = e−iωt+ikθφ. (2.10)

After introducing the variable

z =
r − r+
r − r−

, (2.11)

we find that the equation of motion on φ is

z(1 − z)d
2φ

dz2
+ (1 − z)dφ

dz
+

1

(v2 + 3)2

(

A

z
+ B +

C

1 − z

)

φ = 0, (2.12)

where

A =
1

(r+ − r−)2
(

2k + ω
√
r+

(

2v
√
r+ −

√

v2 + 3
√
r−

))2

, (2.13)

B = − 1

(r+ − r−)2
(

2k + ω
√
r−

(

2v
√
r− −

√

v2 + 3
√
r+

))2

, (2.14)

C = 3(v2 − 1)ω2 − m2l2(v2 + 3). (2.15)

The solutions take the forms of hypergeometric function. Near the horizon, there are two indepen-

dent solutions

φ1 = zα(1 − z)βF(a, b, c, z), φ2 = z−α(1 − z)βF(a − c + 1, b − c + 1, 2 − c, z), (2.16)

where

α = −i
√
A

v2 + 3
,

β =
1

2

















1 −

√

1 − 4C

(v2 + 3)2

















,
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and

c = 2α + 1,

a = α + β + i
√
−B/(v2 + 3),

b = α + β − i
√
−B/(v2 + 3).

The next step is to impose the physical boundary condition to determine the quasi-normal

modes. From the definition, the quasi-normal modes have to be purely ingoing at the horizon. The

eigenfunction φ1 satisfies this condition. On the other hand, the asymptotical boundary condition

at z = 1 is not obvious. In [10], we imposed the requirement that the outgoing flux should be finite

so that the coefficients of the divergent terms must vanish. This gives out two sets of quasi-normal

modes, determined by the relation

c − a = −n, or c − b = −n, (2.17)

with n being a non-negative integer.

1) Case 1: c − a = −n
In this case, we are led to the following equation on ω:

− i 1

r+ − r−
1

v2 + 3
(4k + ωδ) +

1

2

















1 +

√

1 − 4C

(v2 + 3)2

















= −n, (2.18)

where

δ ≡ 2v(r+ + r−) − 2
√

(v2 + 3)r+r−. (2.19)

2) Case 2: c − b = −n
In this case, the equation on ω is much simpler,

− n − 1

2
+ i

2vω

v2 + 3
=

1

2

√

1 − 4C

(v2 + 3)2
, (2.20)

which has the solution

ωL = −i



















(2n + 1)v +

√

3

(

n +
1

2

)2

(v2 − 1) +
(

1

4
+

m2l2

v2 + 3

)

(v2 + 3)



















. (2.21)

Note that the frequency is pure imaginary, being independent of the angular momentum.

If one tries to solve ω from the equation (2.18), one would get a solution of quite in-

volved form. Obviously, the quasi-normal modes look very different from the prediction (1.1)

of AdS/CFT correspondence.

However, this is just an illusion. We are going to show that the AdS/CFT correspondence

still holds, but in a subtle way. Firstly let us consider the conformal weight of the scalar field

of mass m, even though the general dictionary of warped AdS/CFT correspondence has not been
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set up. Consider the scalar field of mass m propagating in the spacelike warped AdS 3, which has

the metric

ds2 =
l2

v2 + 3

[

−(1 + r2)dτ2 + dr2

1 + r2
+

4v2

v2 + 3
(dx + rdτ)2

]

. (2.22)

Near the boundary, with the ansatz

Φ = ei(k̃x−ω̃τ)φ, (2.23)

the scalar equation takes the form

∂2zφ +

(

ω̃2 − 2k̃ω̃

z
− ss

z2

)

φ = 0, (2.24)

where

ss =
3(1 − v2)

4v2
k̃2 +

l2

v2 + 3
m2. (2.25)

At the asymptotical region, φ ∼ r∆s . To have a well-behaved solution, ∆s should be negative.

In the end, we have the relation

hR = −∆s =
1

2
±

√

1

4
+ ss. (2.26)

This is the conformal weight of the scalar field of mass m. We will present another derivation of

the conformal dimension of the primary operator dual to the scalar perturbation in section 4.

The subtlety comes from the asymptotic behavior of the spacelike stretched warped AdS 3

black hole. The metric of the asymptotic geometry of the black hole is of the form

ds2

l2
=

3(v2 − 1)r2dθ2
4

+
dr2

(v2 + 3)r2
+ dt2 + 2vrdtdθ. (2.27)

It looks different from the spacelike warped AdS 3. However, after proper identification, it is actu-

ally the same as the asymptotic geometry of the spacelike warped AdS 3. Locally, the identification

is [19]

τ↔ −v
2 + 3

2
θ, x↔ −v

2 + 3

2v
t. (2.28)

This identification suggests that in the warped black hole case, the correspondence relation should

be modified. Either from the scalar equation in (2.27), or from the above identification, we have

the following relations between the quantum numbers in two backgrounds:

ω̃ =
2

v2 + 3
k, k̃ =

2v

v2 + 3
ω. (2.29)

Notice that the identification (2.28) between the asymptotic geometries is local. In fact, as

pointed out in [19] the global warped AdS3 is not the ground state of the warped black hole. In

other words, the spacelike stretched AdS3 black holes with mass and angular momentum could not

be taken as the “excited” states. This is reflected in the fact that the Killing vectors ∂τ and ∂x of the

warped AdS3 spacetime are translations along the noncompact orbits, while the Killing vector ∂θ

of the warped black hole is along the compact orbit. Consequently, the quantum number ω̃ is con-

tinuous, while the quantum number k should be integer-valued. However, the identification (2.29)
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relating these two quantities stems from the local identification and does not care about the global

properties. We will see shortly that it is the identification (2.29) that make the conjectured warped

AdS/CFT correspondence manifest in the context of the quasi-normal modes.

The relations (2.29) allows us to reorganize (2.18) into

ω̃R =
1

v2 + 3
(−4πTLlk̃ − (i4πTRl)(n + hR)). (2.30)

This is not exactly, but quite similar to (1.1). The discrepancy is the 1/(v2 + 3) factor, which may

be from the warped geometry or the coordinates we choose which may induce the redefinition of

the temperature. Anyway, we would like to take (2.30) as the convincing evidence to support the

warped AdS/CFT correspondence.

Moreover, we have another set of the quasi-normal modes determined by (2.20). However,

in this case, due to the absence of the quantum number k, there is no relation on ω̃L. In fact, the

relation (2.20) gives

k̃ = −i(n + hL), (2.31)

where hL = hR for scalar. The fact that there is only one set of the quasi-normal modes sounds

strange. This could be related to the fact that the isometry group of the spacelike warped AdS 3 is

U(1)L × SL(2)R.
We would like to clarify the discrepancy between the relations (2.30), (2.31) and the re-

lation (1.1) furthermore. The strangest thing is the appearance of left-moving temperature TL

in (2.30) rather than in (2.31). This is mainly due to the special property of the dual 2D CFT. In

fact, the existence of nonvanishing angular momentum in the warped black holes induce a chemical

potential in the right-moving sector. The scalar operator in 2D CFT not only has conformal weights,

but also has the right charge coupled to the chemical potential. More precisely the chemical poten-

tial ΩR = −2πTL, qR = k̃. While the temperature TL in the relation (2.31) could be recovered by

define the left-moving frequency in 2D CFT as ωL = 2πTLk̃. This picture is inspired by the study

in Kerr/CFT correspondence [26] and will be discussed more clearly in our future work [27].

In the special case of zero mass black hole, the left-moving temperature TL ∝ MADT = 0, the

dual CFT becomes a “chiral” one, similar to the one dual to the null warped background. Now the

chemical potential is zero, and the relation (2.30) is in better match with (1.1). However, unlike the

null warped black holes we will study in the next section, there still exist a left sector with (2.31).

Another interesting point is that one could also choose the conformal weight to be

hR =
1

2
−

√

1

4
+ ss, (2.32)

if − 1
4
< ss < 0. In this case, the finiteness of the flux requires that

a = −n, or b = −n. (2.33)

Similarly, we get the above two relations (2.30), (2.31). It is remarkable that one cannot get this

conclusion from imposing the vanishing Dirichlet condition at asymptotic infinity. This fact sug-

gests that the requirement of finite flux is not only physical but also more powerful.

Before ending the discussion on the scalar quasi-normal modes, we would like to elucidate the

organization of the quasi-normal relations (2.18), (2.20) in terms of ω̃ and k̃. The essential point
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is that the warped AdS/CFT correspondence states that quantum gravity asymptotic to the warped

AdS3 spacetime is holographically dual to 2D CFT. Therefore, in setting up the dictionary, one

needs to use the quantum numbers of the warped AdS3. More technically, the quantum number ω̃

and k̃ of bulk warped AdS3 spacetime correspond to the eigenvalues of L̄0 and L0 in dual field the-

ory. Once we have the black hole in the bulk and change the local geometry, we should still use the

quantum numbers ω̃ and k̃ in the study of warped AdS/CFT correspondence at finite temperature.

In the remaining part of this section, we calculate the vector and fermionic quasi-normal modes

of the spacelike AdS3 black holes and rewrite them in terms of ω̃ and k̃.

2.1 Vector perturbation

In order to obtain the quasi-normal modes of the vector fields, we should study the equations of the

massive vector fields which are second order ordinal differential equations

▽µF
µν = m2Aν. (2.34)

However, one may work with the following first order equations whose solutions are the solutions

of the above equations in three-dimensional spacetime:

ǫ
αβ

λ
∂αAβ = −mAλ, (2.35)

where ǫ
αβ

λ
is the Levi-Civita tensor with ǫtrθ = 1/

√−g. Since the background have translational

symmetries along t and θ, we can make the following ansatz

Aµ = e−iωt+ikθφµ. (2.36)

Then the equations of motion can be given explicitly

dφt

dr
= 2D(r)

((

−ωk
ml
+ mlM(r)

)

φt −
(

ω2

ml
+ ml

)

φθ

)

, (2.37)

dφθ

dr
= 2D(r)

((

k2

ml
+ mlN(r)

)

φt −
(

−ωk
ml
+ mlM(r)

)

φθ

)

, (2.38)

φr = −
2D(r)

ml
(ikφt + iωφθ). (2.39)

After changing the variables to

z =
r − r+
r − r−

, (2.40)

we have the second order ordinary equation for φt

z(1 − z)d
2φt

dz2
+ (1 − z)dφt

dz
+

(

Av

z
+ Bv +

Cv

1 − z

)

φt = 0, (2.41)

where

Av =
1

(r+ − r−)2(v2 + 3)2
(

2k + ω
√
r+(2v

√
r+ −

√

v2 + 3
√
r−)

)2

,

Bv = −
1

(r+ − r−)2(v2 + 3)2
(

2k + ω
√
r−(2v

√
r− −

√

v2 + 3
√
r+)

)2

,

Cv =
1

(v2 + 3)2

(

3(v2 − 1)ω2 − (m2l2 + 2mvl)(v2 + 3)
)

. (2.42)
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The solutions can be written in terms of hypergeometric functions. There are two indepen-

dent solutions,

φ1 = zαv(1− z)βv+1F(av + 1, bv + 1, cv, z), φ2 = z−αv (1− z)βv+1F(av − cv + 2, bv − cv + 2, 2− cv, z),
(2.43)

where αv = −i
√
Av, βv = (−1 +

√
1 − 4Cv)/2 and

cv = 1 + 2αv, av = αv + βv + i
√

−Bv, bv = αv + βv − i
√

−Bv. (2.44)

Since the quasi-normal modes are purely ingoing at the horizon, φ1 is the solution we need.

By using the equation (2.37), we obtain φθ in terms of the variable z ,

φθ = Ãvφt + B̃v

1

1 − zφt + C̃vz
dφt

dz
, (2.45)

where

Ãv =
1

2ω2 + 2m2l2

(

−2ωk + 2m2l2vr− − m2l2
√

r+r−(v2 + 3)
)

,

B̃v =
m2l2v(r+ − r−)
ω2 + m2l2

,

C̃v = −
ml(v2 + 3)(r+ − r−)

2ω2 + 2m2l2
.

Similarly the solution can be written in terms of hypergeometric functions explicitly. Finally

we have

φθ = zαv(1 − z)βv
{

(Ãv + C̃v(αv + βv − bv))(cv − bv − 1)F(av, bv, cv, z)

+
(

2βv(Ãv + C̃v(αv + βv − bv)) + avC̃v(cv − av − 1)
)

F(av, bv + 1, cv, z)

+av
ml(r+ − r−)
2ω2 + 2m2l2

(

2mlv − (v2 + 3)βv
)

F(av + 1, bv + 1, cv, z)

}

(2.46)

φt = avz
αv(1 − z)βv+1F(av + 1, bv + 1, cv, z). (2.47)

There are two special cases we would like to consider separately. If av = 0 or cv − bv − 1 = 0

which may lead to ω2 + m2l2 = 0, one can directly solve the equations. Here we introduce a new

parameter β̃v =
2mlv
v2+3

for convenience. In the case ω = −iml, we have β̃v = βv which means av = 0.

In this case, one of the solutions of the equations of motion is

φt = 0, φθ = zαv (1 − z)β̃v . (2.48)

This solution has purely ingoing mode at the horizon and so is the right solution we want. While

the other solution is that φt = z−αv (1 − z)−2mlv and φθ can be obtained from the equations of motion

correspondingly. One can find that φθ approaches to z−αv near the horizon and (1 − z)−1−2mlv at

infinity. This is a solution with outgoing mode near the horizon. Thus it is not the solution we need.

In the case ω = iml, one has cv − bv − 1 = 0. Then one solution is φt = 0, φθ = z−αv(1 − z)βv .
It is a solution with outgoing mode. The other solution is a solution with ingoing mode, where

φt = zαv(1 − z)−2mlv and φθ approaches to (1 − z)−1−2mlv at asymptotic infinity.
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One has to impose the physical boundary condition at asymptotic infinity. One may require

the flux vanishing condition as the scalar field case. Let us consider the energy flux and the angular

momentum flux. They are defined as

Fe =
∫

dtdθ
√
−gT r

t , Fa =
∫

dtdθ
√−gT r

θ . (2.49)

Using the equations of motion and considering the flux at infinity after time averaging, we have

Fe ≃ (ikφt + iωφθ)φ
∗
t + c.c., (2.50)

Fa ≃ (ikφt + iωφθ)φ
∗
θ + c.c . . . (2.51)

For ω is real, the leading term of the flux at asymptotic infinity is proportional to

∣

∣

∣

∣

∣

Γ(cv)Γ(av + bv + 2 − cv)
Γ(av + 1)Γ(bv + 1)

∣

∣

∣

∣

∣

2

(1 − z)−1−2βv (2.52)

Generally the finite flux boundary condition for the solutions at asymptotic infinity gives the fol-

lowing relation:

bv + 1 = −n, or av = −n. (2.53)

Note that av = 0 also satisfies the boundary condition from the solution (2.48).

For v = 1, we need some special considerations since the third line of (2.46) may be zero. In

the end we find that it leads to the same quasi-normal modes as the ones in the BTZ black hole,

once the proper redefinition of the temperature is taken into account.

1. For the case bv + 1 = −n, we have

− i 1

r+ − r−
1

v2 + 3
(4k + ωδ) +

1

2

(

1 +
√

1 − 4Cv

)

= −n, (2.54)

which is very similar to (2.18) except replacing C with Cv(v
2 + 3)2.

2. For the case av = −n, we have

i
2vω

v2 + 3
= n − 1

2
+
1

2

√

1 − 4Cv, (2.55)

For the general case v > 1, the relations (2.54), (2.55) lead to quite involved forms of the fre-

quencies of the quasi-normal modes. However, as we stated above, we have to consider the subtle

identification of the quantum numbers. As the first step to compare the above results with the CFT

prediction, we would like to discuss the conformal weights of the massive vectors. From the mas-

sive vector field equation in the spacelike stretched AdS 3 spacetime, after analyzing the behavior

of the solution at asymptotic infinity, we can determine its conformal weight. One choice is

hvR =
1

2
+

√

1

4
+ sv (2.56)

with

sv =
3(1 − v2)

4v2
k̃2 +

(m2l2 + 2vml)

v2 + 3
. (2.57)
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Therefore, taken into account of the subtle identification (2.29), the above relation (2.53) could

be rewritten as

ω̃v
R =

1

v2 + 3
(−4πTLlk̃ − (i4πTRl)(n + h

v
R)), or (2.58)

k̃ = −i(n + hvL). (2.59)

where hv
L
= hv

R
− 1.

As the scalar case, there is another choice of the conformal weight

hvR =
1

2
+

√

1

4
+ s′v, (2.60)

where

s′v =
3(1 − v2)

4v2
k̃2 +

(m2l2 − 2vml)
v2 + 3

, (2.61)

which corresponds to the vector field with a different helicity. In this case, the vanishing boundary

condition cannot give the right constraint. One has to read from flux finiteness condition. In the

end, one obtains the same relations (2.58) with hv
L
= hv

R
+ 1.

2.2 Fermion perturbation

In this subsection we analyze the quasi-normal modes of the fermionic fields on the spacelike

stretched warped AdS3 black holes background. In order to solve the Dirac equations, we should

choose the vielbein for the background spacetime and calculate the corresponding spin connection.

The vielbein eaµ is chosen as

e0 =
l

2
√
D(r)

dθ, e1 = l
√

D(r)dr, e2 = ldt + M(r)ldθ, (2.62)

where eaµdx
µ = ea. The spin connection can be calculated straightforwardly. The nonvanishing

components of the spin connection are

ω01
t = −ω10

t = −M′, ω02
r = −ω20

r = −
√
DM′,

ω01
θ = −ω10

θ = MM′ − N′, ω12
θ = −ω21

θ =
−M′

2
√
D
.

The Dirac equations are

γae
µ
a

(

∂µ +
1

2
ωab
µ Σab

)

Ψ + mΨ = 0, (2.63)

where Σab =
1
4
[γa, γb], γ

0 = iσ2, γ1 = σ1, γ2 = σ3. Similarly, we change to the variable

z =
r − r+
r − r−

,

and with the ansatz Ψ = (ψ+, ψ−)e−iωt+ikθ , we then have

dψ±
dz
=

(

±2i(ωvr+ − ωe + k)
z(v2 + 3)(r+ − r−)

± 2iωv

(v2 + 3)(1 − z) −
1

2(1 − z) −
1

4z

)

ψ±

+

(

∓iω + ml − v

2

)

1
√

(v2 + 3)z(1 − z)
ψ∓, (2.64)
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where e = 1
2

√

r+r−(v2 + 3).

The solutions of these equations with only ingoing flux at the horizon are given by hypergeo-

metric functions

ψ+ = zα f +1/2(1 − z)β f F(a f + 1, b f , c f + 1, z), (2.65)

ψ− =
c f (iω + ml − v/2)
a f (b f − c f )

√
v2 + 3

zα f (1 − z)β f F(a f , b f , c f , z), (2.66)

where c f = 2α f + 1, a f = α f + β f + γ f , b f = α f + β f − γ f , and

α f = −
2i(ωvr+ − ωe + k)
(v2 + 3)(r+ − r−)

− 1

4
, (2.67)

β f =
1

2
−

√

(ml − v/2)2
v2 + 3

− 3ω2(v2 − 1)
(v2 + 3)2

, (2.68)

γ f =
2i(ωvr− − ωe + k)
(v2 + 3)(r+ − r−)

− 1

4
. (2.69)

Similar to the vector case, there are two special cases: c f − b f = 0 and a f = 0, both of which

lead to ω2 + (ml − 1
2
)2 = 0. In fact, if Imω ≤ 0 then one has c f − b f = 0, while we have a f = 0 for

Imω ≥ 0.

For the case iω = ml − 1
2
, one has a solution with purely ingoing mode near the horizon as

ψ+ = 0, ψ− = zα f (1 − z)β̃ f , where β̃ f =
(2ml−v)v
v2+3

+ 1
2
. The other solution has outgoing mode near

the horizon.

For the case −iω = ml − 1
2
, one solution with outgoing mode is ψ− = 0, ψ+ = z−α f − 1

2 (1 − z)β̃ f .
The other one which has ingoing mode is ψ+ = zα f (1 − z)1−β̃ f and ψ− has the same asymptotic

behavior of ψ+ near the horizon and at infinity.

We impose the vanishing flux condition at asymptotic infinity. The flux is

√
−gΨ̄er1γ1Ψ � (1 − z)−1(|ψ+|2 − |ψ−|2). (2.70)

The leading divergent term of the flux is of order (1 − z)2β f−1, where if β f is complex we choose

Re(β f ) < 1/2 for the branch cut. Its coefficient

∣

∣

∣

∣

∣

∣

Γ(c f + 1)Γ(c f − a f − b f )

Γ(c f − a f )Γ(c f − b f + 1)

∣

∣

∣

∣

∣

∣

2

(2.71)

must vanish. Considering that the solution in the c f − b f = 0 case also satisfy the boundary

condition, so we have

c f − a f = −n, or c f − b f = −n. (2.72)

for the quasi-normal modes.

1. In the case: c f − b f = −n, we have

− n + i 2vω

v2 + 3
=

√

(ml − v/2)2
v2 + 3

− 3ω2(v2 − 1)
(v2 + 3)2

, (2.73)
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2. In the case: c f − a f = −n, we have

− i l

r+ − r−
1

v2 + 3
(4k + ωδ) +

1

2
+

√

(ml − v/2)2
v2 + 3

− 3ω2(v2 − 1)
(v2 + 3)2

= −n. (2.74)

In the limit v = 1, the spectrum of the quasi-normal mode is

ωR = −
4k

δ
− i4(r+ − r−)

δ

(

n +
1

2
(1 + |ml − 1/2|)

)

, (2.75)

ωL = −2i
(

n +
1

2
|ml − 1/2|

)

(2.76)

where δ = 2(
√
r+ −

√
r−)2. So the left and the right conformal weights are given by hL = |ml −

1/2|/2, and hR = (1 + |ml− 1/2|)/2. This is in precise match with the results in the BTZ black hole

obtained in [6], after considering the different choice of the vielbeins.

For the general case with v > 1, in order to compare with the prediction of warped AdS/CFT

correspondence, we need the conformal weights of the massive fermionic operators. In the similar

spirit as the scalar and the vector, we have

h
f

R
=

1

2
+

√

(ml − v/2)2
v2 + 3

− 3k̃2(v2 − 1)
(v2 + 3)2

. (2.77)

Taken into account of the identification (2.29), the relation (2.74) is of the form

ω̃
f

R
=

1

v2 + 3

(

−4πTLlk̃ − (i4πTRl)(n + h
f

R
)
)

, (2.78)

and the relation (2.73) is of the form

k̃ f = −i(n + h f

L
), (2.79)

where h
f

L
= h

f

R
− 1

2
.

Similarly, one may have

h
f

R
=

1

2
+

√

(ml + v/2)2

v2 + 3
− 3k̃2(v2 − 1)

(v2 + 3)2
, (2.80)

and h
f

L
= h

f

R
− 1

2
. Even in this case, the quasi-normal modes are still given by (2.78), (2.79).

Let us summarize the result we obtained in this section. No matter what kind of the perturba-

tions we considered, the quasi-normal modes of the spacelike stretched AdS 3 black hole could be

simply written as

ω̃R =
1

v2 + 3
(−4πTLlk̃ − (i4πTRl)(n1 + hR)), (2.81)

k̃ = −i(n2 + hL), (2.82)

with n1, n2 being non-negative integers.

3 Quasi-normal modes of the null warped black holes

Null warped AdS 3 spacetime is another vacuum solution of three-dimensional topological massive

gravity.1 It is only well defined at v = 1. Similar to other warped AdS 3 spacetime, it also has

1For the related study on AdS wave solution, see [18].
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isometry group SL(2,R) × U(1)null. The null warped black hole could be taken as the quotient of

the null warped AdS 3. The metric of the null warped black hole is of the form

ds2

l2
= −2rdθdt + (r2 + r + α2)dθ2 + dr2

4r2
, (3.1)

where 1/2 > α > 0 in order to avoid the naked causal singularity. The horizon is located at

r = 0. From the thermodynamics of this black hole, it was argued that there exist non-vanishing

right-moving temperature

TR =
α

πl
. (3.2)

One may propose the following conjecture: v = 1 quantum topological massive gravity with

asymptotical null warped AdS 3 geometry is holographically dual to a 2D boundary CFT with the

left-moving central charge cL =
l
G

4v
v2+3

and the right-moving central charge cR =
(5v2+3)l

Gv(v2+3)
. From the

black hole entropy, it seems that it is not necessary to have left-moving central charge since TL = 0.

However, the diffeomorphism anomaly requiring that cL − cR = − l
Gv

asks for the existence of the

left-moving sector.

In order to check this conjectured correspondence, we study the quasi-normal modes in the

null warped black hole in this section. Firstly let us consider the scalar perturbation. The equation

of motion for the scalar field is

∇2Φ − m2Φ = 0. (3.3)

Taken the ansatz Φ = e−iωt+ikθR(r), the equation becomes

d

dr

(

4r2
d

dr
R

)

+

(

−2ωk
r
+
ω2(r2 + r + α2)

r2
− m2l2

)

R = 0. (3.4)

The above equation can be solved by Kummer functions

R± = e−
z
2 z

1
2
±m̃sF

(

1

2
± m̃s − κ, 1 ± 2m̃s, z

)

(3.5)

where z = −iωα 1
r
, m̃s =

1
2

√
1 + m2l2 − ω2 and κ = i

4α
(ω− 2k). Here we choose −π < argz < π for

the branch cut. Actually the solution should be a combination

R = C1R+ +C2R−. (3.6)

Now let us consider the boundary condition for the quasi-normal modes. There have to be

only ingoing modes near the horizon where z approaches to the infinity. The asymptotic expansion

of Kummer function at asymptotic infinity is

F(α, γ, z) ∼ Γ(γ)

Γ(γ − α)e
−iαπz−α +

Γ(γ)

Γ(α)
ezzα−γ. (3.7)

where it requires − 3π
2
< argz < π

2
. In our case, the second term of the right hand equation cor-

responds to the outgoing modes near the horizon. For the solution (3.6), the vanishing outgoing

condition requires

C1 = −
Γ(1 − 2m̃s)

Γ(1
2
− m̃s − κ)

C, C2 =
Γ(1 + 2m̃s)

Γ(1
2
+ m̃s − κ)

C, (3.8)
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where C is a constant. Next we require the flux at infinity to be vanishing. The flux is given by

F ∼ 2π

i
r2(Φ∗∂rΦ − c.c.) (3.9)

For the solution R(z), the leading term of the corresponding flux is proportional to C∗
1
C2 − c.c. and

the sub-leading term is proportional to C2C
∗
2
r−1+2m̃s . So if Re(m̃s) >

1
2
, the flux vanishes if C2 = 0

that is
1

2
+ m̃s − κ = −n (3.10)

We will see that 1
2
+ m̃s is the conformal weight of the scalar of mass m in the following and

next section. While for the case Re(m̃s) <
1
2
, the flux vanishes when C1 = 0 or C2 = 0, which

indicate that
1

2
+ m̃s − κ = −n, or

1

2
− m̃s − κ = −n. (3.11)

Note that for the case Re(m̃s) <
1
2
, there are two possible choices of the conformal weights after

considering the identification of the quantum numbers: hR =
1
2
± m̃s. Therefore, the above relations

on quasi-normal frequencies could be simply written into

hR − κ = −n. (3.12)

In order to compare the quasi-normal mods with the result from the dual conformal field

theory, we first need to identify the conformal weights of the dual operators. Now we calculate the

conformal weight of the scalar field of mass m from its asymptotic behaviors. The metric of the

null warped AdS 3 spacetime could be of the following form

ds2

l2
=

du2

u2
+
dx+dx−

u2
+

(

dx−

u2

)2

. (3.13)

Near the asymptotic region, we have the scalar equation of motion:

4r2
d2

dr2
R + 8r

d

dr
R + (4k̃2n − m2l2)R = 0, (3.14)

where we have introduced u2 = 1/r and have made the following ansatz:

Φ = e−iω̃nx
−+ik̃nx+R(r). (3.15)

The subscript n is introduced to denote the null background. The eigenfunction is of the form r∆s

with −∆s being the conformal weight. The equation (3.14) leads to

∆2s + ∆s +
4k̃2n − m2l2

4
= 0, (3.16)

with the solution

∆s = −
1

2
± 1

2

√

1 + m2l2 − 4k̃2n. (3.17)

In order that the solution is well-behaved, ∆ should be negative, this helps us to take

∆s = −
1

2
± 1

2

√

1 + m2l2 − 4k̃2n, if m2 < 4k̃2n,

∆s = −
1

2
− 1

2

√

1 + m2l2 − 4k̃2n, if m2 > 4k̃2n. (3.18)
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The conformal dimension of the dual primary operator is just hs
R
= −∆s.

Similar to the spacelike warped case, in order to compare with the prediction of dual CFT, one

has to consider the identification of quantum numbersdue to the coordinates transformations. In

the asymptotic region, we can make the following identification locally:

u2 ↔ 1

r
, x− ↔ θ, x+ ↔ −2t. (3.19)

Correspondingly we have the identification between the quantum numbers:

k = −ω̃n, (3.20)

ω = 2k̃n. (3.21)

With this identification, the relation (3.10) can be rewritten as

ω̃R = −k̃n − i2πTRl(n + hR) (3.22)

This is reminiscent of the relation (1.1). The factor 2 discrepancy with (1.1) comes from the subtlety

in defining the temperature. Actually, in some literatures, it is 2π rather than 4π appeared in (1.1).

Next, let us consider the quasi-normal modes of the massive vector field in the null warped

black hole background. One can work with the following first order equations

ǫ
αβ

λ
∂αAβ = −mAλ. (3.23)

On the null warped black hole background, they become

dφt

dr
=

(

− ωk

2mlr2
− ml

2r

)

φt −
ω2

2mlr2
φθ, (3.24)

dφθ

dr
=

(

ml(r2 + r + α2)

2r2
+

k2

2mlr2

)

φt +

(

ml

2r
+

ω2

2mlr2

)

φθ, (3.25)

φr =
−1

2mlr2
(ikφt + iωφθ), (3.26)

with the ansatz Aµ = e−iωt+ikθφµ(r). From the above equations, we obtain a second order differential

equation for φt,

d2φt

dx2
+
1

4

(

ω2 − m2l2 + 2ml

x2
+
ω2 − 2ωk

x
+ ω2α2

)

φt = 0, (3.27)

where x = 1
r
. It can be solved in terms of Kummer function analogous to the scalar field case

φt = e−
z
2 z

1
2
±m̃vF

(

1

2
± m̃v − κ, 1 ± 2m̃v, z

)

, (3.28)

where z = −iωαx, m̃v =
1
2

√

(ml − 1)2 − ω2 and κ = i
4α
(ω − 2k). Note that φθ, φr can be solved

straightforwardly by using (3.25) (3.26). Considering the boundary condition for the quasi-normal

modes, we also have the similar relation as in the scalar case. One also has to make a combination

of the two solutions with only ingoing modes at the horizon. The coefficients in the combination are

C1 = −
Γ(1 − 2m̃v)

Γ(1
2
− m̃v − κ)

C, C2 =
Γ(1 + 2m̃v)

Γ(1
2
+ m̃v − κ)

C, (3.29)
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with C being a constant. And the flux has a leading term proportional to C∗
1
C2 − c.c. and the

sub-leading term C∗
2
C2r

−1+2m̃v . So from the condition that the flux should be finite at asymptotic

infinity, we have

1

2
+ m̃v − κ = −n. (3.30)

The conformal dimension of the massive vector field could be obtained easily:

hvR =
1

2
+
1

2

√

(ml − 1)2 − 4k̃2n. (3.31)

With this and the identification (3.20), we have the relation

ω̃v
R = −k̃n − i2πTRl(n + h

v
R), (3.32)

from (3.30).

Lastly, we turn to the study of the quasi-normal modes of the fermionic perturbations. The

analysis of the quasi-normal modes for the fermionic fields in the null warped black hole back-

ground is analogous to the stretched case. We first choose the vielbein:

e0 = rldt +
1

2
l(1 − α2 − r − r2)dθ,

e1 =
l

2r
dr,

e2 = −rldt + 1

2
l(1 + α2 + r + r2)dθ

and then calculate the spin connection. The none-zero components of the spin connection are

ω01
0 = −ω

10
0 = (1 + α2 − r2)/l, ω12

0 = −ω21
0 = (α2 − r2)/l, ω02

1 = −ω
20
1 = 1/l,

ω01
2 = −ω

10
2 = (α2 − r2)/l, ω12

2 = −ω21
2 = (−1 + α2 − r2)/l,

where ωbc
a = e

µ
aω

bc
µ .

Taking the ansatz Ψi = e−iωt+ikθψi(r) and making the redefinition of the fields as

ψ1 = ψ
′
1 − ψ′2, ψ2 = ψ

′
1 + ψ

′
2, (3.33)

we rewrite the Dirac equations as

dψ′
1

dr
= −2ml + 3

4r
ψ′1 +

iω

2r2
ψ′2, (3.34)

dψ′
2

dr
=

iω(r2 + r + α2) − 2ikr
2r2

ψ′1 +
2ml − 1

4r
ψ′2. (3.35)

As before we change the variable to x = 1
r
and redefine the fields as P = x−

1
2ψ′

1
, then we obtain a

second order differential equation,

d2P

dx2
+
1

4















1 + ω2 − (ml − 1
2
)2

x2
+
ω2 − 2ωk

x
+ ω2α2















P = 0, (3.36)
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which can be solved in terms of Kummer functions

ψ′1 = x
1
2 e−

z
2 z

1
2±m̃ f F

(

1

2
± m̃ f − κ, 1 ± 2m̃ f , z

)

(3.37)

where m̃ f =
1
2

√

(ml − 1
2
)2 − ω2, κ = i

4α
(ω − 2k).

The solution of ψ′
2
can be obtained by using (3.34). Similarly considering the boundary con-

dition for the quasi-normal modes, we have

1

2
+ m̃ f − κ = −n. (3.38)

The conformal dimension of the fermion operator is

h
f

R
=

1

2
+
1

2

√

(

ml − 1

2

)2

− 4k̃2n. (3.39)

This relation and the identification (3.20) give us

ω̃
f

R
= −k̃n − i2πTRl(n + h

f

R
), (3.40)

from (3.38).

In short, the quasi-normal modes for various perturbations, including the massive scalar, vector

and spin 1/2 fermion, of the null warped AdS 3 black hole could all be written in a concise form

ω̃R = −k̃n − i2πTRl(n + hR). (3.41)

This relation is quite similar to the prediction (1.1) of warped AdS/CFT correspondence, up to a

factor 2. We take it as strong evidence to support the conjectured correspondence.

4 Conformal dimensions

In this section, we try to compute the conformal dimensions of the dual operators corresponding

to various perturbations around the spacelike warped and null warped backgrounds. Instead of

analyzing the asymptotic behavior of the solution of the equation of motions of the perturbations,

we take a slightly more algebraic way. For both the spacelike stretched AdS 3 and the null warped

AdS 3, they have the isometry group SL(2,R)×U(1). The perturbations should respect the isometry

group. The highest conformal weight mode created by the bulk perturbations must obey the alge-

braic equation L1φ = 0. Its L0 eigenvalue can be taken as the conformal dimensions of the primary

operators in the boundary CFT. It turns out that the conformal dimensions determined in this way

are in perfect agreement with the ones obtained before. For simplicity, we just focus on the scalar

and the vector perturbations.

4.1 Spacelike stretched case

Let us consider a massive scalar Φ of mass m in the warped spacelike AdS 3 spacetime. From

warped AdS/CFT correspondence, such a scalar field have a counterpart boundary operator in dual

conformal field theory. We work in the following form of the spacelike stretched AdS 3:

ds2 =
l2

v2 + 3

(

− cosh2 σdτ2 + dσ2 +
4v2

v2 + 3
(du + sinhσdτ)2

)

, (4.1)
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which is the same as (2.22) by the coordinate transformation r = sinhσ, x = u.

Such a background has the U(1)L × SL(2,R)R isometries. The U(1)L isometry is generated by

L0 = i∂u, (4.2)

and the SU(2)R isometry is generated by L̄0, L̄1 and L̄−1 satisfying

[L̄0, L̄±1] = ∓L̄±1, [L̄1, L̄−1] = 2L̄0, (4.3)

where

L̄0 = i∂τ, (4.4)

L̄1 = −eiτ
(

∂σ + i tanhσ∂τ + i
1

coshσ
∂u

)

, (4.5)

L̄−1 = e−iτ
(

∂σ − i tanhσ∂τ − i
1

coshσ
∂u

)

. (4.6)

The scalar equation of motion now takes the form

1

coshσ
∂σ(coshσ∂σ)Φ −

1

cosh2 σ
∂2τΦ +

2 sinhσ

cosh2 σ
∂τ∂uΦ

− sinh
2 σ

cosh2 σ
∂2uΦ +

(

v2 + 3

4v2

)

∂2uΦ −
m2l2

v2 + 3
Φ = 0. (4.7)

The above equation could be rewritten as

{

−
[

1

2
(L̄1L̄−1 + L̄−1L̄1) − L̄20

]

+
3(v2 − 1)

4v2
L20 −

m2l2

v2 + 3

}

Φ = 0. (4.8)

One may make the following ansatz

Φ = e−iω̃Rτ+ik̃uφ. (4.9)

The corresponding highest weight mode should satisfy

L̄1Φ = 0, L̄0Φ = hRΦ. (4.10)

This helps us to fix the conformal dimension2

hR = ω̃R =
1

2
±

√

1

4
+ s, (4.11)

where s is defined to be (2.25). This is the same as (2.26), where we pick +.

For the highest weight state, we can even solve the equation (4.10) and get

Φ = e−ihRτ+ik̃uek̃ tan
−1 sinhσ(coshσ)−hR . (4.12)

In order to study the conformal weight for the vector fields in the space-like warped AdS3, it

is more convenient to use the Poincare coordinates [9]

ds2 =
l2

v2 + 3

(

−x2dt2 + dx2

x2
+

4v2

v2 + 3
(dθ + xdt)2

)

. (4.13)

2The conformal weights of the scalar fields have been discussed in [23] in the similar way independently. We would

like to thank the anonymous referee for pointing this out.
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The Killing vectors of the space-like warped AdS3 are given by

V−1 = i

(

− 1

x2
− t2

)

∂t + 2itx∂x +
2i

x
∂θ, (4.14)

V0 = t∂t − x∂x, V1 = i∂t, V = i∂θ, (4.15)

which satisfy the commutation relations:

[V0,V±1] = ∓V±1, [V1,V−1] = 2V0. (4.16)

For the highest weight state created by the vector field, it satisfies

LV1
Aµ = 0, LV0

Aµ = hvRAµ, LVAµ = −k̃Aµ, (4.17)

where L denotes Lie derivative. Then the solution is

At = C1x
1−hv

Reik̃θ, Ax = C2x
−1−hv

Reik̃θ, Aθ = C3x
−hv

Reik̃θ. (4.18)

Using the equation of motion for the vector fields, we obtain

C2 = −
ik̃(v2 + 3)

2mlv
C1, C3 =

2mlv(h − 1) − k̃2(v2 + 3)
ml(2hv − ml) C1 (4.19)

and

hvR =
1

2
+

√

1

4
+
m2l2 − 2mlv

v2 + 3
− 3(v2 − 1)k̃2

4v2
. (4.20)

This is slightly different from (2.56) by the sign before m, but is exactly the same as (2.60). The

difference comes from that through the coordinate transformation, the helicity also exchange, which

induce m→ −m.
It is interesting to compare the above results with the ones in usual AdS 3/CFT2 correspon-

dence. In latter case, one has

hR + hL = ∆, hR − hL = ±s, (4.21)

where s is the spin of the field,

∆ = 1 ±
√

1 + m2l2, (4.22)

for the scalar fields, and

∆ = 1 + |m|l, (4.23)

for the vector fields. For warped AdS 3/CFT2 correspondence, the relations (4.21) still make

sense, even though we cannot determine hL directly. Another property shared by both cases is

that in the vector and the fermionic case, when the helicity changes, m changes sign and accord-

ingly the expression of the conformal dimension need to be changed slightly. However, the rela-

tions (4.22), (4.23) have to be modified greatly in the warped AdS case. One modification is on the

scale, from l to 2l/
√
v2 + 3. Another modification is more significant: in the warped case, another

quantum number from U(1)R appears in the conformal dimensions. This is not only true for the

spacelike stretched case but also true for the null warped case. As a consistent check, when v = 1,

our result reduce to (4.22), (4.23).
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One interesting feature in the conformal weights of operators in dual CFT is that they depend

on the U(1) quantum number k̃. The presence of this quantum number means that even though the

mass-square of the scalar field satisfies the Breitenlohner-Freedman bound for three-dimensional

AdS spacetime, the perturbation could still be unstable. As a result, superradiance may happen in

the spacelike stretched AdS3 spacetime [23], just like in Kerr black hole [26]. Similar phenomenon

happens in the null warped AdS3 spacetime as well.

4.2 Null warped case

For the null warped AdS 3 spacetime (3.13), it has isometry group SL(2,R)R×U(1)null. The U(1)null
is generated by

N = ∂+, (4.24)

and SL(2,R)R is generated by

N1 = ∂−,

N0 = x−∂− +
u

2
∂u,

N−1 = (x−)2∂− − u2∂+ + x−u∂u,

which satisfy the commutation relations:

[N0,N±1] = ∓N±1, [N1,N−1] = 2N0. (4.25)

The equation of motion of the massive scalar Φ in the null warped AdS 3 spacetime is of

the form

(u2∂2u − u∂u − 4∂2+ + 4u2∂+∂− − m2l2)Φ = 0, (4.26)

which could be rewritten as

[

1

2
(N1N−1 + N−1N1) − N2

0 + N2 +
m2l2

4

]

Φ = 0. (4.27)

The highest conformal weight state should satisfy

N1Φ = 0, N0Φ = hsRΦ, NΦ = ik̃nΦ. (4.28)

This just gives the constraint ω̃ = 0 and the conformal weight hs
R
= 1

2
± 1

2

√

1 + m2l2 − 4k̃2n. The
solution of the highest weight state is

Φ = u2hReik̃nx
+

(4.29)

The consistent boundary condition require hs
R
> 0.

For the conformal weight of the vector field, the highest weight state satisfy

LN1
Aµ = 0, LN0

Aµ = hvRAµ, LNAµ = ik̃nAv. (4.30)

This is consistent with the equation of motion. For any Killing vector ξ, we can choose a coordinate

y satisfying ξ = ∂y. In this special coordinates, the background metric is independent of y. The
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equation of motion for the vector fields can be seen as a linear operator acting on the vector fields.

Since the operator only depends on the metric, the operator commutes with the Lie derivative of the

Killing vector. So the equations for the highest weight solution are consistent with the equations of

the vector fields. The solution of (4.30) is

A+ = C1u
2hv

Reik̃nx
+

, A− = C3u
2hv

Reik̃n x
+

, Au = C2u
2hv

R
−1eik̃nx

+

. (4.31)

Using the equation of motion for the vector fields, we obtain

C1 =
−2k̃2n

ml(hv
R
− ml)C2, C3 =

−2ik̃n
ml

C2, (4.32)

and also find the conformal dimension

hvR =
1

2
+
1

2

√

(ml − 1)2 − 4k̃2n. (4.33)

Comparing with the conformal dimensions in usual AdS/CFT correspondence, we see that the

only difference is the appearance of k̃ terms in (4.33).

5 Conclusions and discussion

In this paper, we calculated the quasi-normal modes of various perturbations, including the massive

scalar, vector and spin one-half fermionic perturbations, of the spacelike stretched and the null

warped AdS 3 black holes. For the spacelike stretched black hole, all kinds of the quasi-normal

modes could be rewritten in terms of the quantum numbers ω̃ and k̃ in a simple way:

ω̃R =
1

v2 + 3
(−4πTLlk̃ − (i4πTRl)(n1 + hR)), or

k̃ = −i(n2 + hL), (5.1)

where n1, n2 are non-negative integers. Similarly, for the null warped black hole, the quasi-normal

modes are of the form

ω̃R = −k̃n − i2πTRl(n + hR), (5.2)

with n being non-negative integer. The above relations are reminiscent of the relations (1.1) on

the poles of the retarded Green’s function. Since the conjectured correspondence is between the

spacelike stretched (null) warped AdS 3 and its holographically dual 2D CFT, one needs to use the

quantum numbers appeared in these spacetimes rather than the ones in the black holes to set up the

dictionary. This is why we rewrite the quasi-normal modes in terms of the quantum numbers ω̃

and k̃ of the spacelike (null) warped AdS 3. And actually it is in terms of these quantum numbers

that make the warped AdS/CFT correspondence manifest. This is the key point to set up the dictio-

nary. The phenomena happening here is extraordinary. The asymptotic geometries of the warped

black holes could be locally transformed to the ones of the warped spacetimes. The coordinate

transformations induce the identifications of two sets of quantum numbers. Taken this subtlety into

account, the quasi-normal modes of the warped black holes could be reorganized into (5.1), (5.2),

which are well consistent with the CFT prediction (1.1) and so support the conjectures.
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The relations (5.1), (5.2) were obtained after the identifications (2.29), (3.20) being taken into

account. However, the identifications come from the local transformations, rather than the global

ones. Especially, considered the fact that the global warped AdS3 spacetime is not included in the

black hole’s phase space, the above identifications deserve further investigations and clarifications.

We wish we can return to this issue in the future.

One interesting point is that it seems that we have only one set of the quasi-normal modes. For

the null warped case, this seems to be natural since the dual CFT has only right temperature. For

the spacelike stretched case, this sounds strange. However, recall that the isometry group of the

spacelike stretched AdS 3 is just SL(2,R)R ×U(1)L. For the highest weight operators corresponding
to the massive scalar, one can define its right-moving conformal weight from SL(2,R)R, but can

only define k̃ from U(1)L. This in fact is in consistence with (5.1).

Another interesting point in our result is that the above two relations (5.1), (5.2) are still a little

different from the predicted poles (1.1), up to a scale factor. This could be due to the ambiguity

in determining the temperature, originated from coordinate transformation. This possibility has

been shown in [10] for comparison with the BTZ black hole. It would be interesting to pin down

this issue.

In this paper, we proposed a conjecture that the quantum topological massive gravity asymp-

totic to the null warped AdS3 is holographically dual to 2D CFT. Our study on the quasi-normal

modes of the null warped black hole support this conjecture. However it would be essential to

put this conjecture on a more solid ground. One interesting issue is that the holographic anomaly

suggests that there should be not only right sector but also left one as well. This could not be seen

from the study of the black hole thermodynamics and the quasi-normal modes. To understand this

issue better, it would be important to investigate the asymptotical boundary conditions on the gravi-

tational perturbations and check if the central charges could be derived from the symmetry algebra.

It would be worth looking for other evidence to support the warped AdS/CFT correspondence.

One possibility is to compare the absorption cross sections. This has been explored in the context

of Kerr/CFT correspondence [26]. For the warped AdS 3 black hole, since the equation of motion

of the perturbations are exactly solvable, we expect that the same analysis would be feasible [27].

In this paper, we discussed the quasi-normal modes of the scalar, vector and fermionic per-

turbations. It would be interesting to consider the gravitational perturbations. In this case, the

equations of motions is a third order differential equation, so is more difficult to solve. Neverthe-

less, It was shown in [19] that after fixing the gauge completely, the equations of motion in the

warped AdS3 could be simplified. We expect the same simplification may happen in the warped

black hole case.

Acknowledgments

We would like to thank R.G. Cai, J.X. Lu and B. Wang for valuable discussions and comments.

BC would like to thank KIAS for hospitality during his visit. The work was partially supported by

NSFC Grant No.10535060,10775002,10975005 and NKBRPC (No. 2006CB805905).

– 23 –



J
H
E
P
1
1
(
2
0
0
9
)
0
9
1

References

[1] H.P. Nollert, Quasinormal modes: the characteristic ’sound’ of black holes and neutron stars, Class.

Quant. Grav. 16 (1999) R159 [SPIRES];

K.D. Kokkotas and B.G. Schmidt, Quasi-normal modes of stars and black holes, Living Rev. Rel. 2

(1999) 2 [gr-qc/9909058] [SPIRES];

E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes,

Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [SPIRES].

[2] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor.

Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES];

S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string

theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES];

E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [SPIRES].

[3] E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv.

Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].

[4] G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal

equilibrium, Phys. Rev. D 62 (2000) 024027 [hep-th/9909056] [SPIRES].

[5] B. Wang, C.-Y. Lin and E. Abdalla, Quasinormal modes of Reissner-Nordstróm anti-de Sitter black
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